Quasi-independence, homology and the unity of type: a topological theory of characters.
نویسندگان
چکیده
In this paper Lewontin's notion of "quasi-independence" of characters is formalized as the assumption that a region of the phenotype space can be represented by a product space of orthogonal factors. In this picture each character corresponds to a factor of a region of the phenotype space. We consider any region of the phenotype space that has a given factorization as a "type", i.e. as a set of phenotypes that share the same set of phenotypic characters. Using the notion of local factorizations we develop a theory of character identity based on the continuation of common factors among different regions of the phenotype space. We also consider the topological constraints on evolutionary transitions among regions with different regional factorizations, i.e. for the evolution of new types or body plans. It is shown that direct transition between different "types" is only possible if the transitional forms have all the characters that the ancestral and the derived types have and are thus compatible with the factorization of both types. Transitional forms thus have to go over a "complexity hump" where they have more quasi-independent characters than either the ancestral as well as the derived type. The only logical, but biologically unlikely, alternative is a "hopeful monster" that transforms in a single step from the ancestral type to the derived type. Topological considerations also suggest a new factor that may contribute to the evolutionary stability of "types". It is shown that if the type is decomposable into factors which are vertex irregular (i.e. have states that are more or less preferred in a random walk), the region of phenotypes representing the type contains islands of strongly preferred states. In other words types have a statistical tendency of retaining evolutionary trajectories within their interior and thus add to the evolutionary persistence of types.
منابع مشابه
Some aspects of cosheaves on diffeological spaces
We define a notion of cosheaves on diffeological spaces by cosheaves on the site of plots. This provides a framework to describe diffeological objects such as internal tangent bundles, the Poincar'{e} groupoids, and furthermore, homology theories such as cubic homology in diffeology by the language of cosheaves. We show that every cosheaf on a diffeological space induces a cosheaf in terms of t...
متن کاملTopological structure on generalized approximation space related to n-arry relation
Classical structure of rough set theory was first formulated by Z. Pawlak in [6]. The foundation of its object classification is an equivalence binary relation and equivalence classes. The upper and lower approximation operations are two core notions in rough set theory. They can also be seenas a closure operator and an interior operator of the topology induced by an equivalence relation on a u...
متن کاملCalculating Different Topological Indices of Von Neumann Regular Graph of Z_(p^α )
By the Von Neumann regular graph of R, we mean the graph that its vertices are all elements of R such that there is an edge between vertices x,y if and only if x+y is a von Neumann regular element of R, denoted by G_Vnr (R). For a commutative ring R with unity, x in R is called Von Neumann regular if there exists x in R such that a=a2 x. We denote the set of Von Neumann regular elements by V nr...
متن کاملAlgebraic and topological aspects of quasi-prime ideals
In this paper, we define the new notion of quasi-prime ideal which generalizes at once both prime ideal and primary ideal notions. Then a natural topology on the set of quasi-prime ideals of a ring is introduced which admits the Zariski topology as a subspace topology. The basic properties of the quasi-prime spectrum are studied and several interesting results are obtained. Specially, it is pro...
متن کاملON THE USE OF KULSHAMMER TYPE INVARIANTS IN REPRESENTATION THEORY
Since 2005 a new powerful invariant of an algebra has emerged using the earlier work of Horvath, Hethelyi, Kulshammer and Murray. The authors studied Morita invariance of a sequence of ideals of the center of a nite dimensional algebra over a eld of nite characteristic. It was shown that the sequence of ideals is actually a derived invariant, and most recently a slightly modied version o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of theoretical biology
دوره 220 4 شماره
صفحات -
تاریخ انتشار 2003